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A Thermal Analog of a Classical Center of Mass System
Problem: An Undergraduate Experiment

By: J.E. Hasbun and George E. Keller
Department of Physics
State University of West Georgia,
Carrollton, GA 30118

Abstract
A low cost heat transfer setup has been used to develop an experiment suitable for
undergraduates. The heat lost by a hot liquid through a metal conductor is gained by a cold
liquid. The experimental data is best explained by modeling the time behavior of the
substances' temperatures in a way that's analogous to the classical center of mass problem. In
this experiment, it is useful to define center of mass-like and relative coordinate-like
temperatures.  The behavior of these temperatures is consistent with experimental findings.
The coupled heat transfer equations for the problem are easily solved within this framework.

Equipment
•  CENCO Heat Transfer Set 52748-38U  (www.cenconet.com)
•  (optional) Agilent 34970A Data Acquisition Unit (see Editor’s Note)

Introduction
In the apparatus shown in Fig. 1, liquid substances of certain mass and specific heats at given
initial temperatures occupy their respective left and right styrofoam containers. The liquids are
in contact with each other through a metal connector whose legs are immersed in the
respective liquids. An experiment using the apparatus[1], shown in Fig.1, would consist of
obtaining the temperature loss time rate of the hot substance and the temperature gain time
rate of the cold substance. One would expect that the rate of heat loss of one substance is
related to the rate of heat gain of the other substance. Such rate would obviously be related to
the thermal conductivity of the metal.

In an undergraduate thermodynamic laboratory experiment, this conductivity can be
quantitatively measured. At first sight, the apparatus suggests that perhaps Newton's Law of
cooling[2] is applicable to the rate of heat loss of the hot substance, and the heat gained by
the cold substance. In actuality, however, this is indeed the case for the heat loss or gain of
only one of the substances, if the temperature of the other substance is held constant.

In general, the experiment is complicated by the fact that both temperatures can vary, and the
system as a whole is coupled to the environment. In the discussion below, we show a simple
way to explain the temperature time rate behavior assuming no heat loss to the environment.

Model
The starting point for the analysis of the temperature time rate behavior of each substance
described above is to note that the rate of heat transfer is limited by the metal's ability to
conduct. Thus, for the metal, assuming no heat loss to the environment, we write,
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where QB is the bar's heat transfer, t is the time, km is the metal's thermal conductivity, A is the
cross-sectional area, L is the length of the metal that is not in contact with the fluids, Th is the
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temperature of the hot substance, and Tc is the temperature of the cold substance. The
styrofoam containers are taken to have negligible specific heat, and since the system is
insulated, the main loss of heat for the hot substance is through the bar, so that
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where Qh is the hot liquid's heat transfer. The heat gained by the cold substance is similar to
this with a different sign to get,

                
d

dt
Q

d

dt
Qc B=  ,                                                  (2.3)

Since the heat contained in the liquids is proportional to their temperature; i.e.,

                 Qx =  m c T ,x x x                                                     (2.4)

where x can be h or c for hot or cold substance respectively, mx is the mass of the substance,
cx is its specific heat, and Tx is its temperature.  By combining the above Eqs. (2.1-2.4) we get,

                   C
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for the hot liquid's temperature rate, and

  C
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for the cold liquid's temperature rate. In Eqs.(2.5), we have defined,

       K
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L
m≡ ,                                                    (2.5c)

due to the metal's thermal conductivity contribution, and where Cx  = mxcx, is the heat
capacity for the x liquid. Eqs.(2.5) represent a coupled system of equations for the temperature
behavior of the hot and cold substances with time. We might expect that due to the fact that
the temperature difference between the substances gives rise to a relative temperature, and
that since both of these temperatures should in the limit achieve some equilibrium
temperature, then, as we find, the problem can be treated in a similar way to the well known
center of mass system problem in classical mechanics[3].  Thus, we define the relative
temperature, T, and center of  mass temperature, TE   such that
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where the heat capacities, or thermal masses, play the role here that the body masses play in
the classical problem case. By inverting the matrix we obtain the relations,
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for the hot temperature, and
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for the cold temperature in terms of the center of thermal mass temperature, and relative
temperature coordinates. If we now add Eqs. (2.5a, 2.5b) we obtain

C
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dt
T C
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Th h c c+ = 0                                          (2.8)

indicating that,

C T C Th h c c+ =  constant.                                        (2.9)

For consistency, this constant must be obtainable from Eqs.(2.7) as follows: if we multiply

Eq.(2.7a) by Ch and Eq.(2.7b) by  Cc  and add the results to obtain,

constant = +( )C C Th c E. .                                       (2.10)

Next we multiply Eq.(2.5a) by Cc; Eq.(2.5b) by Ch, and subtract the results to obtain,

                      C C
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dt
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T K C C T Th c h c h c h c( ) ( )( ),− = − + −            (2.11a)

which, if we use the definition for the relative temperature of Eq.(2.6), we can find its rate of
change in time as,
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,                                                           (2.11b)

where we have defined the reduced thermal mass as,

                             1 1 1
µ

≡ +
C Ch c

 ,                                                           (2.11c)

Equation (2.11b) can be easily effected for T to obtain,

                                    T T
K

to= − exp( )
µ

                                                   (2.12)

where To ≡ Tho- Tco , with Txo  the initial temperature for the x liquid. From Eq.(2.12) we see
that as t →∞, T → 0, in agreement with what we expect; i.e., that both liquids will achieve an
equal final temperature. In fact, their final achieved temperature, in this limit, can be seen from
Eqs.(2.7) to be TE.  We can explicitly obtain TE, from Eq.(2.9,10 or 2.6) evaluated at t = 0, to
rewrite,

TE

Tho
Cc

Tco
Ch

= +µ( )                                                    (2.13)

This result is consistent with the equilibrium temperature that the substances would achieve
were they mixed directly in one container. This indicates that the equilibrium temperature plays
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a similar role here to the role played by the center of mass coordinate in the two body problem
of classical mechanics.

Experimental Results
In carrying out the actual experiment the apparatus employed is the heat transfer set
mentioned earlier[1] whose arrangement is shown in Fig.1. We have used water as the
substance. The initial masses of the water are mh= 339.2gr, mc= 344.1gr.  A specific heat of

4190 J
kg-K ,was used for water, so that µ = 715.72J/K. The temperatures of the hot and cold

water were recorded versus time as shown in Table I for a typical data set.  Also shown in the
Table is the relative temperature T.

The quantity To, from Table I is 73.5°C. By plotting the natural logarithm of the ratio T/To
versus the time, t in minutes, of the Table, we obtain the experimental data shown in Fig.2 as
indicated by the filled circles. We have fitted the data with a simple linear regression analysis.
The data is best fitted with the line

Ln
T

To
t( ) . .= − −0 021 0 004  ,                             (3.1)

with a correlation r2=0.999. The metal contact is Aluminum, whose length not in contact with
the water was determined to have the value of L=0.155m. Its cross-sectional area is
A=1.6129X10-4m2. From Eqs.(2.5c), the thermal conductivity of the metal is given by

                     km
L

A

K= µ
µ( ) .                                             (3.2)

From Eq. (2.12) and the fit of Eq. (3.1), the ratio K/µ is determined to have the value of
3.5X10-4sec-1. We thus obtain the experimental value of the metal conductivity as

km=240.73 W
m-K  . A theoretical value of 238.50 W

m-K  is inferred from available standards in the
300-400K range [4]. This yields the experimental error of 0.93% for the thermal conductivity of
Aluminum in this experiment.

Conclusion
A low cost heat transfer apparatus has been employed to investigate the time rate of change
of the temperature of a hot and a cold substance in contact with each other through a metal.
We have identified a simple way of analyzing the experiment through the use of relative and
center of thermal mass temperatures. The theoretical approach is reminiscent of the well
known classical center of mass two body problem, thus rendering the exercise a very
instructive one. A linear regression analysis of the experiment has been employed to
determine the thermal conductivity of Aluminum. The results demonstrate that this experiment
has a very low error, thus making it suitable for an undergraduate laboratory.
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Table I

Data values obtained in the experiment. Here t  is time, Th   is the hot water temperature,
Tc is the cold water temperature, and T is the relative temperature between the two substance.

T(min) Th(° C) Tc(° C) T(° C)

0 95.0 21.5 73.5

1 94.5 22.5 72.0

2 93.7 23.3 70.4

3 93.0 24.0 69.0

4 92.5 24.7 67.8

5 91.3 25.3 66.0

6 90.5 26.0 64.5

7 89.5 26.7 62.8

8 88.7 27.3 61.4

9 88.0 28.0 60.0

10 87.5 28.5 59.0

11 87.0 29.0 58.0

12 86.3 29.7 56.6

13 85.8 30.3 55.5

14 85.5 30.8 54.7

15 85.3 31.5 53.8

16 84.5 32.0 52.5

17 83.7 32.5 51.2

18 83.0 33.0 50.0

19 82.0 33.3 48.7

20 81.5 33.6 47.9

25 79.3 35.5 43.8

30 76.5 37.5 39.0
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Fig.1
A schematic representation of the thermal heat transfer set used in the experiment. The
actual apparatus used is ''Heat transfer set from CENCO, part No. 52748-38U, $21.50''.

Fig.2
A plot of the data in the form of Ln(T/To ) versus time in minutes is indicated by the solid
circles. The linear fit to the data is indicated by the solid line.
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Editor’s Notes

The experiment as written requires no electronic measuring equipment; however, it would be a
great candidate for an Agilent 34970 Data Acquisition Unit.

A single Agilent 34970A could record the results of a single student setup, or simultaneously
record the termperatures on many setups.  Data is displayed by the PC software that comes
with the Agilent 34970A and the data set can be sent to another software package, such as
Excel or Mathcad, for further analysis.

The automated method has the advantages of:
•  Getting students familiar with the way temperature data is usually measured in industry
•  Allowing optional overnight data acquisition, thus giving more complete characterization of

the experiment.
•  Seeing a real-time stripchart plot of the temperatures.


